Expression, refolding, and activation of the catalytic domain of human blood coagulation factor XII.
نویسندگان
چکیده
Human blood coagulation factor XII (FXII; 80 kDa) contains a C-terminal serine protease zymogen domain, which becomes activated upon contacting a negative surface. Activated FXII (alphaFXIIa) brings about reciprocal activation of FXII and kallikrein that by further hydrolysis produces the free catalytic domain (betaFXIIa; 28 kDa). Increased levels of alphaFXIIa are associated with coronary heart disease, sepsis, and diabetes. Biophysical investigation of the structural basis of activation, substrate specificity, and regulation of FXII requires an efficient bacterial system for producing the wild-type and mutant recombinant proteins. Here, the cDNA of the zymogen domain of FXII (betaFXII) was cloned into the pET-28a(+) vector and the plasmid was transformed into Escherichia coli strain BL21 (DE3) and overexpressed. The multi-disulfide, recombinant protein, His(6)-betaFXII (rbetaFXII), expressed as an inclusion body, was purified by means of a Ni(2+)-charged resin. The matrix-bound rbetaFXII was subjected to refolding with the glutathione redox system and activated by the in vivo activator, kallikrein. The active form, rbetaFXIIa, obtained in milligram quantities, exhibited similar structural and comparable functional properties relative to human betaFXIIa, as indicated by circular dichroism spectroscopy and kinetics of substrate hydrolysis. Thermodynamics of enzyme:inhibitor complex formation, including the expected 1:1 stoichiometry, was determined for rbetaFXIIa by isothermal calorimetric titration with a specific recombinant protein inhibitor, Cucurbita maxima trypsin inhibitor-V (rCMTI-V; 7kDa).
منابع مشابه
The Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells
Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...
متن کاملExpression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies
Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...
متن کاملA nanobody-based method for tracking factor XII activation in plasma.
The physiological role of the plasma protein factor XII (FXII), as well as its involvement in human pathology, is poorly understood. While FXII is implicated in thrombotic pathology as a coagulation factor, it can contribute to inflammatory conditions without triggering coagulation. We recently generated nanobodies against the catalytic domain of activated FXII (FXIIa). Here, we describe two of...
متن کاملExpression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B
Background: Hemophilia B is an X-linked hereditary disorder of blood coagulation system which is caused by factor IX (FIX) deficiency. Factor IX is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. Replacement of factor IX with plasma-derived or recombinant factor IX is the conventional treatment for hemophilia B to raise the factor IX le...
متن کاملContributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI.
Previous studies have suggested that human platelets can promote the activation of factor XI by two different mechanisms, one requiring factor XII and ADP-treated platelets and the other requiring collagen-treated platelets in the apparent absence of factor XII. To investigate these hypotheses. isolated platelets were tested for their capacity to promote the activation and cleavage of purified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein expression and purification
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2003